Видеоурок «Сущность химических реакций и условия их протекания. Условия самопроизвольного протекания химической реакции Условия протекания реакций оснований

Способность к взаимодействию различных химических реагентов определяется не только их атомно-молекулярной структурой, но и условиями протекания химических реакций. В практике химического эксперимента эти условия интуитивно осознавались и эмпирически учитывались, но теоретически по-настоящему не исследовались. Между тем от них в значительной степени зависит выход получаемого продукта реакции.

К этим условиям относятся прежде всего термодинамические условия, характеризующие зависимость реакций от температуры, давления и некоторых других факторов. В еще большей степени характер и особенно скорость реакций зависят от кинетических условий, которые определяются наличием катализаторов и других добавок к реагентам, а также влиянием растворителей, стенок реактора и иных условий.

Термодинамическими факторами, которые оказывают существенное влияние на скорость протекания химических реакций, являются температура и давление в реакторе. Хотя для завершения любой реакции требуется определенное время, но одни реакции могут протекать очень быстро, а другие – чрезвычайно медленно. Так, реакция образования осадка хлорида серебра при смешивании растворов, содержащих ионы серебра и хлора, занимает несколько секунд. В то же время смесь водорода и кислорода в условиях комнатной температуры и нормального давления можно хранить годами, и никакой реакции при этом не произойдет. Но стоит пропустить через смесь электрическую искру, как произойдет взрыв. Этот пример свидетельствует о том, что на скорость протекания химических реакций влияет множество разнообразных условий: воздействие электричества, ультрафиолетовых и рентгеновских лучей, концентрации реагентов, их помешивания и даже присутствие других веществ, не участвующих в реакции.

При этом реакции, протекающие в гомогенной системе, состоящей из одной фазы, протекают, как правило, быстрее, чем в гетерогенной системе, состоящей из нескольких фаз. Типичным примером гомогенной реакции является реакция естественного распада радиоактивного вещества, скорость которого пропорциональна концентрации вещества R. Эта скорость может быть выражена дифференциальным уравнением:

где к – константа скорости реакции;

R – концентрация вещества.

Такую реакцию называют реакцией первого порядка, а время, необходимое для того, чтобы исходное количество вещества уменьшилось наполовину, называют периодом полураспада.

Если реакция происходит в результате взаимодействия двух молекул Aw В, тогда ее скорость будет пропорциональна числу их столкновений. Установлено, что это число пропорционально концентрации молекул А и В. Тогда можно определить скорость реакции второго порядка в дифференциальной форме:

Скорость в существенной степени зависит от температуры. Эмпирическими исследованиями установлено, что почти для всех химических реакций скорость при повышении температуры на 10 °С возрастает приблизительно в два раза. Наблюдаются, однако, и отклонения от этого эмпирического правила, когда скорость может увеличиться только в 1,5 раза, и наоборот, скорость реакции в отдельных случаях, например при денатурации яичного альбумина (при варке яиц), возрастает в 50 раз. Не следует, однако, забывать, что эти условия могут оказывать воздействие на характер и результат химических реакций при определенной структуре молекул химических соединений.

Наиболее активны в этом отношении соединения переменного состава с ослабленными связями между их компонентами. Именно на них и направлено в первую очередь действие разных катализаторов, которые значительно ускоряют ход химических реакций. Меньшее влияние оказывают на реакции такие термодинамические факторы, как температура и давление. Для сравнения можно привести реакцию синтеза аммиака из азота и водорода. Вначале его не удавалось осуществить ни с помощью большого давления, ни высокой температуры, и только использование в качестве катализатора специально обработанного железа впервые привело к успеху. Однако эта реакция сопряжена с большими технологическими трудностями, которые удалось преодолеть после того, когда был использован металл органический катализатор. В его присутствии синтез аммиака происходит при обычной температуре 18 °С и нормальном атмосферном давлении, что открывает большие перспективы не только для производства удобрений, но в будущем такого изменения генной структуры злаков (ржи и пшеницы), когда они не будут нуждаться в азотных удобрениях. Еще большие возможности и перспективы возникают с использованием катализаторов в других отраслях химической промышленности, в особенности в «тонком» и «тяжелом» органическом синтезе.

Не приводя больше примеров о чрезвычайно высокой эффективности катализаторов в ускорении химических реакций, следует обратить особое внимание на то, что возникновение и эволюция жизни на Земле была бы невозможна без существования ферментов, служащих по сути живыми катализаторами.

Несмотря на то, что ферменты обладают общими свойствами, присущими всем катализаторам, тем не менее они не тождественны последним, поскольку функционируют в рамках живых систем. Поэтому все попытки использовать опыт живой природы для ускорения химических процессов в неорганическом мире наталкиваются на серьезные ограничения. Речь может идти только о моделировании некоторых функций ферментов и использовании этих моделей для теоретического анализа деятельности живых систем, а также частично для практического применения выделенных ферментов для ускорения некоторых химических реакций.

§ 1 Признаки химических реакций

При химических реакциях исходные вещества превращаются в другие вещества, обладающие другими свойствами. Об этом можно судить по внешним признакам химических реакций: образование газообразного или нерастворимого вещества, выделение или поглощение энергии, изменение цвета вещества.

Кусок медной проволоки нагреем в пламени спиртовки. Мы увидим, что та часть проволоки, которая находилась в пламени, почернела.

Прильем 1-2 мл раствора уксусной кислоты к порошку пищевой соды. Наблюдаем появление пузырьков газа и исчезновение соды.

Прильем 3-4 мл раствора хлорида меди к раствору едкого натра. При этом голубой прозрачный раствор превратится в ярко-синий осадок.

К 2 мл раствора крахмала добавим 1-2 капли раствора йода. И полупрозрачная белая жидкость станет непрозрачной темно-синей.

Самым главным признаком химической реакции является образование новых веществ.

Но об этом можно судить и по некоторым внешним признакам протекания реакций:

Выпадение осадка;

Изменение цвета;

Выделение газа;

Появление запаха;

Выделение или поглощение энергии в виде тепла, электричества или света.

Например, если к смеси водорода и кислорода поднести зажженную лучинку или пропустить через эту смесь электрический разряд, то произойдёт оглушительный взрыв, а на стенках сосуда образуется новое вещество – вода. Произошла реакция образования молекул воды из атомов водорода и кислорода с выделением тепла.

Наоборот, разложение воды на кислород и водород требует электрической энергии.

§ 2 Условия возникновения химической реакции

Однако для возникновения химической реакции необходимы определённые условия.

Рассмотрим реакцию горения этилового спирта.

Она происходит при взаимодействии спирта с кислородом воздуха, для начала реакции необходимо соприкосновение молекул спирта и кислорода. Но если мы откроем колпачок спиртовки, то при соприкосновении исходных веществ – спирта и кислорода, реакции не происходит. Поднесём зажжённую спичку. Спирт на фитиле спиртовки нагревается и загорается, начинается реакция горения. Условием, необходимым для возникновения реакции здесь является первоначальное нагревание.

В пробирку нальем 3%-й раствор перекиси водорода. Если оставим пробирку открытой, то перекись водорода начнет медленно разлагаться на воду и кислород. При этом скорость реакции будет такая низкая, что признаков выделения газа мы не увидим. Добавим немного чёрного порошка оксида марганца (IV). Наблюдаем бурное выделение газа. Это кислород, который образовался при реакции разложения перекиси водорода.

Необходимым условием для начала этой реакции было добавление вещества, которое не участвует в реакции, но ускоряет ее.

Такое вещество называется катализатор.

Очевидно, что для возникновения и течения химических реакций необходимы некоторые условия, а именно:

Соприкосновение исходных веществ (реагентов),

Их нагревание до определённой температуры,

Применение катализаторов.

§ 3 Особенности химических реакций

Характерной особенностью химических реакций является то, что они часто сопровождаются поглощением или выделением энергии.

Дмитрий Иванович Менделеев указывал, что важнейшим признаком всех химических реакций является изменение энергии в процессе их протекания.

Выделение или поглощение теплоты в процессе химических реакций обусловлено тем, что энергия затрачивается на процесс разрушения одних веществ (разрушение связей между атомами и молекулами) и выделяется при образовании других веществ (образование связей между атомами и молекулами).

Энергетические изменения проявляются либо в выделении, либо в поглощении теплоты. Реакции, протекающие с выделением теплоты, называются экзотермическими.

Реакции, протекающие с поглощением теплоты, называются эндотермическими.

Количество выделенной или поглощённой теплоты называют тепловым эффектом реакции.

Тепловой эффект обычно обозначают латинской буквой Q и соответствующим знаком: +Q для экзотермических реакций и -Q для эндотермических реакций.

Область химии, занимающаяся изучением тепловых эффектов химических реакций, называется термохимией. Первые исследования термохимических явлений принадлежат учёному Николаю Николаевичу Бекетову.

Значение теплового эффекта относят к 1 моль вещества и выражают в килоджоулях (кДж).

Большинство осуществляющихся в природе, лаборатории и промышленности химических процессов являются экзотермическими. К ним относятся все реакции горения, окисления, соединения металлов с другими элементами и другие.

Однако существуют и эндотермические процессы, например разложение воды под действием электрического тока.

Тепловые эффекты химических реакций колеблются в широких пределах от 4 до 500 кДж/моль. Наиболее значителен тепловой эффект при реакциях горения.

Попробуем объяснить, в чём сущность происходящих превращений веществ и что происходит с атомами реагирующих веществ. Согласно атомно-молекулярному учению все вещества состоят из атомов, соединённых друг с другом в молекулы или другие частицы. В процессе реакции происходит разрушение исходных веществ (реагентов) и образование новых веществ (продуктов реакции). Таким образом, все реакции сводятся к образованию новых веществ из атомов, входящих в состав исходных веществ.

Следовательно, сущность химической реакции состоит в перегруппировке атомов, в результате которой из молекул (или других частиц) получаются новые молекулы (или другие формы вещества).

Список использованной литературы:

  1. Н.Е. Кузнецова. Химия. 8 класс. Учебник для общеобразовательных учреждений. – М. Вентана-Граф, 2012.

В главе 5.2 мы познакомились с основными принципами протекания химических реакций. Они и составляют теорию элементарных взаимодействий.

§ 5.3.1 Теория элементарных взаимодействий

Перечисленные ниже основные положения ТЭВ отвечают на вопрос:

Что необходимо для протекания химических реакций?

1. Химическая реакция инициируется активными частицами реагентов, отличными от насыщенных молекул: радикалами, ионами, координационно ненасыщенными соединениями. Реакционная способность исходных веществ определяется наличием в их составе этих активных частиц.

Химия выделяет три основных фактора, влияющих на химическую реакцию:

  • температура;
  • катализатор (если нужен);
  • природа реагирующих веществ.

Из них важнейшим является последний. Именно природа вещества определяет его способность образовывать те или иные активные частицы. А стимулы лишь помогают осуществиться этому процессу.

2. Активные частицы находятся в термодинамическом равновесии с исходными насыщенными молекулами .

3. Активные частицы взаимодействуют с исходными молекулами по цепному механизму.

4. Взаимодействие между активной частицей и молекулой реагента происходит в три стадии: ассоциации, электронной изомеризации и диссоциации.

На первой стадии протекания химической реакции – стадии ассоциации активная частица присоединяется к насыщенной молекуле другого реагента с помощью химических связей, которые слабее, чем ковалентные. Ассоциат может быть образован с помощью ван-дер-ваальсовой, водородной, донорно-акцепторной и динамической связи.

На второй стадии протекания химической реакции – стадии электронной изомеризации происходит важнейший процесс – преобразование сильной ковалентной связи в исходной молекуле реагента в более слабую: водородную, донорно-акцепторную, динамическую, а то и ван-дер-ваальсовую.

5. Третья стадия взаимодействия между активной частицей и молекулой реагента – диссоциация изомеризованного ассоциата с образованием конечного продукта реакции – является лимитирующей и самой медленной стадией всего процесса.

Великая «хитрость» химической природы веществ

Именно эта стадия определяет общие энергетические затраты на весь трехстадийный процесс протекания химической реакции. И здесь заключена великая «хитрость» химической природы веществ. Самый энергозатратный процесс – разрыв ковалентной связи в реагенте – произошел легко и изящно, практически не заметно во времени по сравнению с третьей, лимитирующей стадией реакции. В нашем примере так легко и непринужденно связь в молекуле водорода с энергией 430 кДж/моль преобразовалась в ван-дер-ваальсовую с энергией в 20 кДж/моль. И все энергозатраты реакции свелись к разрыву этой слабой ван-дер-ваальсовой связи. Вот почему энергетические затраты, необходимые для разрыва ковалентной связи химическим путем, значительно меньше затрат на термическое разрушение этой связи.

Таким образом, теория элементарных взаимодействий наделяет строгим физическим смыслом понятие «энергия активации». Это энергия, необходимая для разрыва соответствующей химической связи в ассоциате, образование которого предшествует получению конечного продукта химической реакции.

Мы еще раз подчеркиваем единство химической природы вещества. Оно может вступить в реакцию лишь в одном случае: при появлении активной частицы. А температура, катализатор и другие факторы, при всем их физическом различии, играют одинаковую роль: инициатора.

В промышленности подбирают такие условия, чтобы осуществлялись нужные реакции, а вредные замедлялись.

ТИПЫ ХИМИЧЕСКИХ РЕАКЦИЙ

В таблице 12 приведены основные типы химических реакций по числу участву­ющих в них частиц. Даны рисунки и уравнения часто описываемых в учебни­ках реакций разложения , соединения , замещения и обмена .

В верхней части таблицы представлены реакции разложения воды и гидрокарбоната натрия. Изображён прибор для прохождения через воду постоянного электрическо­го тока. Катод и анод представляют собой металлические пластинки, погружён­ные в воду и соединённые с источником электрического тока. В связи с тем, что чистая вода практически не проводит электрический ток, к ней добавляют небольшое количест­во соды (Nа 2 СО 3) или серной кислоты (Н 2 SО 4). При прохождении тока на обоих электродах происходит выделение пузырьков газа. В трубке, где собирается водород, объём оказывается вдвое большим, чем в трубке, где соби­рается кислород (о его наличии можно удостовериться с помощью тлеющей лучинки). Модельная схема демонстрирует реакцию разложения воды. Химические (ковалентные) связи между атомами в молекулах воды разрушаются, и из освобождающихся атомов обра­зуются молекулы водорода и кислорода.

Модельная схема реакции соединения металлического железа и молекулярной серы S 8 показывает, что в резуль­тате перегруппировки атомов в процессе реакции образуется сульфид железа. При этом разрушаются химические связи в кристалле железа (металлическая связь) и молекуле серы (ковалентная связь), а осво­бодившиеся атомы соединяются с образованием ионных связей в кристалл соли.

К другой реакции соединения относится гашение извести СаО водой с образованием гидроксида кальция. При этом жжёная (негашёная) известь начинает разогреваться и образуется рыхлый порошок гашёной извести.

К реакциям замещения относят взаимодействие металла с кислотой или солью. При погружении достаточно активного металла в сильную (но не азотную) кислоту выделяются пузырьки водорода. Более активный металл вытесняет менее активный из раствора его соли.

Типичными реакциями обмена является реакция нейтрализации и реакция между растворами двух солей. На рисунке показано получение осадка сульфата бария. За ходом реакции нейтрализации следят с помощью индикатора фенолфталеина (малиновая окраска исчезает).

Таблица 12

Типы химических реакций

ВОЗДУХ. КИСЛОРОД. ГОРЕНИЕ

Кислород является самым распространённым химическим элементом на Земле. Содержание его в земной коре и гидросфере представлено в таблице 2 “Распространённость химических элементов”. На долю кислорода приходится примерно половина (47 %) массы литосферы. Он является преобладающим химическим эле­ментом гидросферы. В земной коре кислород присутствует только в связанном виде (оксиды, соли). Гидросфера также представлена в основном связанным кис­лородом (часть молекулярного кислорода растворена в воде).

В атмосфере свободного кислорода содержится 20,9 % по объёму. Воздух – сложная смесь газов. Сухой воздух на 99,9 % состоит из азота (78,1 %), кислорода (20,9 %) и аргона (0,9 %). Содержание этих газов в воздухе практически постоян­но. В состав сухого атмосферного воздуха также входят диоксид углерода, неон, гелий, метан, криптон, водород, оксид азота(I) (оксид диазота, гемиоксид азота – N 2 О), озон, диоксид серы, монооксид уг­лерода, ксенон, оксид азота(IV) (диоксид азота – NО 2).

Состав воздуха определил французский химик Антуан Лоран Лавуазье в конце XVIII века (таблица 13). Он доказал содержание кислорода в воздухе, и назвал его “жизненный воздух”. Для этого он нагревал на печи ртуть в стеклянной реторте, тонкая часть которой поводилась под стеклянный колпак, опущенный в водяную баню. Воздух под колпаком оказывался замкнутым. При нагревании ртуть соединялась с кислородом, превращаясь в оксид ртути красного цвета. “Воздух”, остав­шийся в стеклянном колпаке после нагревания ртути, не содержал кислорода. Мышь, помещённая под колпак, задыхалась. Прокалив оксид ртути, Лавуазье снова выделил из него кислород и вновь получил чистую ртуть.

Содержание кислорода в атмосфере стало заметно увеличиваться около 2 млрд. лет назад. В результате реакции фотосинтеза поглощался некоторый объём углекислого газа и выделялся такой же объём кислорода. На рисунке таблицы схема­тически показано образование кислорода при фотосинтезе. В процессе фотосин­теза в листьях зелёных растений, содержащих хлорофилл , при поглощении солнечной энергии происходит превращение воды и углекислого газа в углеводы (сахара) и кислород . Реакцию образова­ния глюкозы и кислорода в зелёных растениях можно записать в следующем виде:

6Н 2 О + 6СО 2 = С 6 Н 12 О 6 + 6О 2 .

Образующаяся глюкоза превращается в нерастворимый в воде крахмал , который накапливается в растениях.

Таблица 13

Воздух. Кислород. Горение

Фотосинтез представляет собой сложный химический процесс, включающий несколько стадий: поглощение и транспортировку солнечной энергии, использо­вание энергии солнечного света для инициирования фотохимических окисли­тельно-восстановительных реакций, восстановление углекислого газа и образованием угле­водов.

Солнечный свет – это электромагнитное излучение разных длин волн. В молекуле хлоро­филла при поглощении видимого света (красного и фиолетового) происходят переходы электронов из одного энергетического состояния в другое. На фотосинтез расходуется только небольшая часть солнечной энергии (0,03 %), достигающей поверхности Земли.

Весь имеющийся на Земле диоксид углерода проходит через цикл фотосинте­за в среднем за 300 лет, кислород – за 2000 лет, вода океанов – за 2 млн. лет. В настоящее время в атмосфере установилось постоянное содержание кислорода. Он практически полностью расходуется на дыхание, горение и гниение органиче­ских веществ.

Кислород – одно из самых активных веществ. Процессы с участием кислоро­да называются реакциями окисления. К ним относят горение, дыхание, гниение и многие другие. На таблице показано горение нефти, которое идёт с выделением теплоты и света.

Реакции горения могут принести не только пользу, но и вред. Горение можно остановить, прекратив доступ воздуха (окислителя) к горящему предмету с помощью пены, песка или одеяла.

Пенные огнетушители наполняют концентрированным раствором питьевой соды. При её контакте с концентрированной серной кислотой, находящейся в стеклянной ампуле в верхней части огнетушителя, образуется пена углекислого газа. Для приведения в действие огнетушитель переворачивают и ударяют об пол металлическим штиф­том. При этом ампула с серной кислотой разбивается и образующийся в результате реакции кислоты с гидрокарбонатом натрия углекислый газ вспенивает жидкость и выбрасывает её из огнетушителя сильной струёй. Пенис­тая жидкость и углекислый газ, обволакивая горящий предмет, оттесняют воздух и гасят пламя.

Скорость химической реакции – это изменение количества реагирующего вещества или продукта реакции за единицу времени в единице объема (для гомогенной реакции) или на единице поверхности раздела фаз (для гетерогенной реакции).

Закон действующих масс : зависимость скорости реакции от концентрации реагирующих веществ. Чем выше концентрация, тем большее число молекул содержится в объеме. Следовательно, возрастает число соударений, что приводит к увеличению скорости процесса.

Кинетическое уравнение – зависимость скорости реакции от концентрации.

Твердые тела равны 0

Молекулярность реакции – это минимальное число молекул, участвующих в элементарном химическом процессе. По молекулярности элементарные химические реакции делятся на молекулярные (А →) и бимолекулярные (А + В →); тримолекулярные реакции встречаются чрезвычайно редко.

Общий порядок реакции – это сумма показателей степеней концентрации в кинетическом уравнении.

Константа скорости реакции – коэффициент пропорциональности в кинетическом уравнении.

Правило Вант-Гоффа: При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличивается в два – четыре раза

Теория активных соударений (ТАС), есть три условия, необходимых для того, чтобы произошла реакция:

    Молекулы должны столкнуться. Это важное условие, однако его не достаточно, так как при столкновении не обязательно произойдёт реакция.

    Молекулы должны обладать необходимой энергией (энергией активации).

    Молекулы должны быть правильно ориентированы относительно друг друга.

Энергия активации – минимальное количество энергии, которое требуется сообщить системе, чтобы произошла реакция.

Уравнение Аррениуса устанавливает зависимость константы скорости химической реакции от температуры

A – характеризует частоту столкновений реагирующих молекул

R – универсальная газовая постоянная.

Влияние катализаторов на скорость реакции.

Катализатор – это вещество, изменяющее скорость химической реакции, но само в реакции не расходуется и в конечные продукты не входит.

При этом изменение скорости реакции происходит за счет изменения энергии активации, причем катализатор с реагентами образует активированный комплекс.

Катализ – химическое явление, суть которого заключается в изменении скоростей химических реакций при действии некоторых веществ (их называют катализаторами).

Гетерогенный катализ – реагент и катализатор находятся в разных фазах – газообразной и твердой.

Гомогенный катализе – реагенты (реактивы) и катализатор находятся в одной фазе – например, оба являются газами или оба растворены в каком-либо растворителе.

Условия химического равновесия

состояние химического равновесия сохраняется до тех пор, пока остаются неизменными условия реакции: концентрация, температура и давление.

Принцип Ле-Шателье: если на систему, находящуюся в равновесии оказано какое-либо внешнее воздействии, то равновесии сместится в сторону той реакции, которое это действие будет ослаблять.

Константа равновесия – это мера полноты протекания реакции, чем больше величина константы равновесия, тем выше степень превращение исходных веществ в продукты реакции.

ΔG1 С пр > С исх

ΔG>0 К р

Оцените статью
Все обо всем
Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Ок