Из чего состоит многоугольник. Многоугольники и их свойства. Сбор и использование персональной информации

Треугольник, квадрат, шестиугольник – эти фигуры известны практически всем. Но вот о том, что такое правильный многоугольник, знает далеко не каждый. А ведь это все те же Правильным многоугольником называют тот, что имеет равные между собой углы и стороны. Таких фигур очень много, но все они имеют одинаковые свойства, и к ним применимы одни и те же формулы.

Свойства правильных многоугольников

Любой правильный многоугольник, будь то квадрат или октагон, может быть вписан в окружность. Это основное свойство часто используется при построении фигуры. Кроме того, окружность можно и вписать в многоугольник. При этом количество точек соприкосновения будет равняться количеству его сторон. Немаловажно, что окружность, вписанная в правильный многоугольник, будет иметь с ним общий центр. Эти геометрические фигуры подчинены одним теоремам. Любая сторона правильного n-угольника связана с радиусом описанной около него окружности R. Поэтому ее можно вычислить, используя следующую формулу: а = 2R ∙ sin180°. Через можно найти не только стороны, но и периметр многоугольника.

Как найти число сторон правильного многоугольника

Любой состоит из некоторого числа равных друг другу отрезков, которые, соединяясь, образуют замкнутую линию. При этом все углы образовавшейся фигуры имеют одинаковое значение. Многоугольники делятся на простые и сложные. К первой группе относятся треугольник и квадрат. Сложные многоугольники имеют большее число сторон. К ним также относят звездчатые фигуры. У сложных правильных многоугольников стороны находят путем вписывания их в окружность. Приведем доказательство. Начертите правильный многоугольник с произвольным числом сторон n. Опишите вокруг него окружность. Задайте радиус R. Теперь представьте, что дан некоторый n-угольник. Если точки его углов лежат на окружности и равны друг другу, то стороны можно найти по формуле: a = 2R ∙ sinα: 2.

Нахождение числа сторон вписанного правильного треугольника

Равносторонний треугольник – это правильный многоугольник. Формулы к нему применяются те же, что и к квадрату, и n-угольнику. Треугольник будет считаться правильным, если у него одинаковые по длине стороны. При этом углы равны 60⁰. Построим треугольник с заданной длиной сторон а. Зная его медиану и высоту, можно найти значение его сторон. Для этого будем использовать способ нахождения через формулу а = х: cosα, где х – медиана или высота. Так как все стороны треугольника равны, то получаем а = в = с. Тогда верным будет следующее утверждение а = в = с = х: cosα. Аналогично можно найти значение сторон в равнобедренном треугольнике, но х будет заданная высота. При этом проецироваться она должна строго на основание фигуры. Итак, зная высоту х, найдем сторону а равнобедренного треугольника по формуле а = в = х: cosα. После нахождения значения а можно вычислить длину основания с. Применим теорему Пифагора. Будем искать значение половины основания c: 2=√(х: cosα)^2 – (х^2) = √x^2 (1 – cos^2α) : cos^2α = x ∙ tgα. Тогда c = 2xtgα. Вот таким несложным способом можно найти число сторон любого вписанного многоугольника.

Вычисление сторон квадрата, вписанного в окружность

Как и любой другой вписанный правильный многоугольник, квадрат имеет равные стороны и углы. К нему применяются те же формулы, что и к треугольнику. Вычислить стороны квадрата можно через значение диагонали. Рассмотрим этот способ более детально. Известно, что диагональ делит угол пополам. Изначально его значение было 90 градусов. Таким образом, после деления образуются два Их углы при основании будут равны 45 градусов. Соответственно каждая сторона квадрата будет равна, то есть: а = в = с = д = е ∙ cosα = е√2: 2, где е – это диагональ квадрата, или основание образовавшегося после деления прямоугольного треугольника. Это не единственный способ нахождения сторон квадрата. Впишем эту фигуру в окружность. Зная радиус этой окружности R, найдем сторону квадрата. Будем вычислять ее следующим образом a4 = R√2. Радиусы правильных многоугольников вычисляют по формуле R = а: 2tg (360 o: 2n), где а – длина стороны.

Как вычислить периметр n-угольника

Периметром n-угольника называют сумму всех его сторон. Вычислить его несложно. Для этого необходимо знать значения всех сторон. Для некоторых видов многоугольников существуют специальные формулы. Они позволяют найти периметр намного быстрее. Известно, что любой правильный многоугольник имеет равные стороны. Поэтому для того, чтобы вычислить его периметр, достаточно знать хотя бы одну из них. Формула будет зависеть от количества сторон фигуры. В общем, она выглядит так: Р = an, где а – значение стороны, а n – количество углов. Например, чтобы найти периметр правильного восьмиугольника со стороной 3 см, необходимо умножить ее на 8, то есть Р = 3 ∙ 8 = 24 см. Для шестиугольника со стороной 5 см вычисляем так: Р = 5 ∙ 6 = 30 см. И так для каждого многоугольника.

Нахождение периметра параллелограмма, квадрата и ромба

В зависимости от того, сколько сторон имеет правильный многоугольник, вычисляется его периметр. Это намного облегчает поставленную задачу. Ведь в отличие от прочих фигур, в этом случае не нужно искать все его стороны, достаточно одной. По этому же принципу находим периметр у четырехугольников, то есть у квадрата и ромба. Несмотря на то что это разные фигуры, формула для них одна Р = 4а, где а – сторона. Приведем пример. Если сторона ромба или квадрата равна 6 см, то находим периметр следующим образом: Р = 4 ∙ 6 = 24 см. У параллелограмма равны только противоположные стороны. Поэтому его периметр находят, используя другой способ. Итак, нам необходимо знать длину а и ширину в фигуры. Затем применяем формулу Р = (а + в) ∙ 2. Параллелограмм, у которого равны все стороны и углы между ними, называется ромб.

Нахождение периметра равностороннего и прямоугольного треугольника

Периметр правильного можно найти по формуле Р = 3а, где а – длина стороны. Если она неизвестна, ее можно найти через медиану. В прямоугольном треугольнике равное значение имеют только две стороны. Основание можно найти через теорему Пифагора. После того как станут известны значения всех трех сторон, вычисляем периметр. Его можно найти, применяя формулу Р = а + в + с, где а и в – равные стороны, а с – основание. Напомним, что в равнобедренном треугольнике а = в = а, значит, а + в = 2а, тогда Р = 2а + с. Например, сторона равнобедренного треугольника равна 4 см, найдем его основание и периметр. Вычисляем значение гипотенузы по теореме Пифагора с = √а 2 + в 2 = √16+16 = √32 = 5,65 см. Вычислим теперь периметр Р = 2 ∙ 4 + 5,65 = 13,65 см.

Как найти углы правильного многоугольника

Правильный многоугольник встречается в нашей жизни каждый день, например, обычный квадрат, треугольник, восьмиугольник. Казалось бы, нет ничего проще, чем построить эту фигуру самостоятельно. Но это просто только на первый взгляд. Для того чтобы построить любой n-угольник, необходимо знать значение его углов. Но как же их найти? Еще ученые древности пытались построить правильные многоугольники. Они догадались вписать их в окружности. А потом на ней отмечали необходимые точки, соединяли их прямыми линиями. Для простых фигур проблема построения была решена. Формулы и теоремы были получены. Например, Эвклид в своем знаменитом труде «Начало» занимался решением задач для 3-, 4-, 5-, 6- и 15-угольников. Он нашел способы их построения и нахождения углов. Рассмотрим, как это сделать для 15-угольника. Сначала необходимо рассчитать сумму его внутренних углов. Необходимо использовать формулу S = 180⁰(n-2). Итак, нам дан 15-угольник, значит, число n равно 15. Подставляем известные нам данные в формулу и получаем S = 180⁰(15 – 2) = 180⁰ х 13 = 2340⁰. Мы нашли сумму всех внутренних углов 15-угольника. Теперь необходимо получить значение каждого из них. Всего углов 15. Делаем вычисление 2340⁰: 15 = 156⁰. Значит, каждый внутренний угол равен 156⁰, теперь при помощи линейки и циркуля можно построить правильный 15-угольник. Но как быть с более сложными n-угольниками? Много веков ученые бились над решением этой проблемы. Оно было найдено только лишь в 18-м веке Карлом Фридрихом Гауссом. Он смог построить 65537-угольник. С этих пор проблема официально считается полностью решенной.

Расчет углов n-угольников в радианах

Конечно, есть несколько способов нахождения углов многоугольников. Чаще всего их вычисляют в градусах. Но можно выразить их и в радианах. Как это сделать? Необходимо действовать следующим образом. Сначала выясняем число сторон правильного многоугольника, затем вычитаем из него 2. Значит, мы получаем значение: n – 2. Умножьте найденную разность на число п («пи» = 3,14). Теперь остается только разделить полученное произведение на число углов в n-угольнике. Рассмотрим данные вычисления на примере все того же пятнадцатиугольника. Итак, число n равно 15. Применим формулу S = п(n – 2) : n = 3,14(15 – 2) : 15 = 3,14 ∙ 13: 15 = 2,72. Это, конечно же, не единственный способ рассчитать угол в радианах. Можно просто разделить размер угла в градусах на число 57,3. Ведь именно столько градусов эквивалентно одному радиану.

Расчет значения углов в градах

Помимо градусов и радиан, значение углов правильного многоугольника можно попробовать найти в градах. Делается это следующим образом. Из общего количества углов вычитаем 2, делим полученную разность на число сторон правильного многоугольника. Найденный результат умножаем на 200. К слову сказать, такая единица измерения углов, как грады, практически не используется.

Расчет внешних углов n-угольников

У любого правильного многоугольника, кроме внутреннего, можно вычислить еще и внешний угол. Его значение находят так же, как и для остальных фигур. Итак, чтобы найти внешний угол правильного многоугольника, необходимо знать значение внутреннего. Далее, нам известно, что сумма этих двух углов всегда равна 180 градусам. Поэтому вычисления делаем следующим образом: 180⁰ минус значение внутреннего угла. Находим разность. Она и будет равняться значению смежного с ним угла. Например, внутренний угол квадрата равен 90 градусов, значит, внешний будет составлять 180⁰ – 90⁰ = 90⁰. Как мы видим, найти его несложно. Внешний угол может принимать значение от +180⁰ до, соответственно, -180⁰.

Многоугольник – это геометрическая фигура, ограниченная замкнутой ломаной линией , не имеющей самопересечений.

Звенья ломаной называются сторонами многоугольника , а её вершины – вершинами многоугольника .

Углами многоугольника называются внутренние углы, образованные соседними сторонами. Число углов многоугольника равно числу его вершин и сторон.

Многоугольникам даются названия по количеству сторон. Многоугольник с наименьшим количеством сторон называется треугольником, он имеет всего три стороны. Многоугольник с четырьмя сторонами называется четырёхугольником, с пятью – пятиугольником и т. д.

Обозначение многоугольника составляют из букв, стоящих при его вершинах, называя их по порядку (по часовой или против часовой стрелки). Например, говорят или пишут: пятиугольник ABCDE :

В пятиугольнике ABCDE точки A , B , C , D и E – это вершины пятиугольника, а отрезки AB , BC , CD , DE и EA – стороны пятиугольника.

Выпуклые и вогнутые

Многоугольник называется выпуклым , если ни одна из его сторон, продолженная до прямой линии, его не пересекает. В обратном случае многоугольник называется вогнутым :

Периметр

Сумма длин всех сторон многоугольника называется его периметром .

Периметр многоугольника ABCDE равен:

AB + BC + CD + DE + EA

Если у многоугольника равны все стороны и все углы, то его называют правильным . Правильными многоугольниками могут быть только выпуклые многоугольники.

Диагональ

Диагональ многоугольника – это отрезок , соединяющий вершины двух углов, не имеющих общей стороны. Например, отрезок AD является диагональю:

Единственным многоугольником, который не имеет ни одной диагонали, является треугольник, так как в нём нет углов, не имеющих общих сторон.

Если из какой-нибудь вершины многоугольника провести все возможные диагонали, то они разделят многоугольник на треугольники:

Треугольников будет ровно на два меньше, чем сторон:

t = n – 2

где t – это количество треугольников, а n – количество сторон.

Разделение многоугольника на треугольники с помощью диагоналей используется для нахождения площади многоугольника, так как чтобы найти площадь какого-нибудь многоугольника, нужно разбить его на треугольники, найти площадь этих треугольников и полученные результаты сложить .

Часть плоскости, ограниченная замкнутой ломаной линией, называется многоугольником.

Отрезки этой ломаной линии называются сторонами многоугольника. АВ, ВС, CD, DE, ЕА (рис. 1) – стороны многоугольника ABCDE. Сумма всех сторон многоугольника называется его периметром .

Многоугольник называется выпуклым , если он расположен по одну сторону от любой своей стороны, неограниченно продолженной за обе вершины.

Многоугольник MNPKO (рис. 1) не будет выпуклым, так как он расположен не по одну сторону прямой КР.

Мы будем рассматривать только выпуклые многоугольники.

Углы, составленные двумя соседними сторонами многоугольника, называются его внутренними углами, а вершины их – вершинами многоугольника .

Отрезок прямой, соединяющий две несоседние вершины многоугольника, называется диагональю многоугольника.

АС, AD – диагонали многоугольника (рис. 2).

Углы, смежные с внутренними углами многоугольника, называются внешними углами многоугольника (рис. 3).

В зависимости от числа углов (сторон) многоугольник называется треугольником, четырёхугольником, пятиугольником и т. д.

Два многоугольника называются равными, если их можно совместить наложением.

Вписанные и описанные многоугольники

Если все вершины многоугольника лежат на окружности, то многоугольник называется вписанным в окружность, а окружность – описанной около многоугольника (рис).

Если все стороны многоугольника являются касательными к окружности, то многоугольник называется описанным около окружности, а окружность называется вписанной в многоугольник (рис).

Подобие многоугольников

Два одноимённых многоугольника называются подобными, если углы одного из них соответственно равны углам другого, а сходственные стороны многоугольников пропорциональны.

Одноимёнными называются многоугольники, имеющие одинаковое число сторон (углов).

Сходственными называются стороны подобных многоугольников, соединяющие вершины соответственно равных углов (рис).

Так, например, чтобы многоугольник ABCDE был подобен многоугольнику A’B’C’D’E’, необходимо, чтобы: ∠A = ∠A’ ∠B = ∠B’ ∠С = ∠С’ ∠D = ∠D’ ∠Е = ∠Е’ и, кроме того, AB / A’B’ = BC / B’C’ = CD / C’D’ = DE / D’E’ = EA / E’A’ .

Отношение периметров подобных многоугольников

Сначала рассмотрим свойство ряда равных отношений. Пусть имеем, например, отношения: 2 / 1 = 4 / 2 = 6 / 3 = 8 / 4 =2.

Найдем сумму предыдущих членов этих отношений, затем – сумму их последующих членов и найдём отношение полученных сумм, получим:

$$ \frac{2 + 4 + 6 + 8}{1 + 2 + 3 + 4} = \frac{20}{10} = 2 $$

То же самое мы получим, если возьмём ряд каких-нибудь других отношений, например: 2 / 3 = 4 / 6 = 6 / 9 = 8 / 12 = 10 / 15 = 2 / 3 Найдем сумму предыдущих членов этих отношений и сумму последующих, а затем найдём отношение этих сумм, получим:

$$ \frac{2 + 4 + 5 + 8 + 10}{3 + 6 + 9 + 12 + 15} = \frac{30}{45} = \frac{2}{3} $$

В том и другом случае сумма предыдущих членов ряда равных отношений относится к сумме последующих членов этого же ряда, как предыдущий член любого из этих отношений относится к своему последующему.

Мы вывели это свойство, рассмотрев ряд числовых примеров. Оно может быть выведено строго и в общем виде.

Теперь рассмотрим отношение периметров подобных многоугольников.

Пусть многоугольник ABCDE подобен многоугольнику A’B’C’D’E’ (рис).

Из подобия этих многоугольников следует, что

AB / A’B’ = BC / B’C’ = CD / C’D’ = DE / D’E’ = EA / E’A’

На основании выведенного нами свойства ряда равных отношений можем написать:

Сумма предыдущих членов взятых нами отношений представляет собой периметр первого многоугольника (Р), а сумма последующих членов этих отношений представляет собой периметр второго многоугольника (Р’), значит, P / P’ = AB / A’B’ .

Следовательно, периметры подобных многоугольников относятся как их сходственные стороны.

Отношение площадей подобных многоугольников

Пусть ABCDE и A’B’C’D’E’ – подобные многоугольники (рис).

Известно, что ΔAВС ~ ΔA’В’С’ ΔACD ~ ΔA’C’D’ и ΔADE ~ ΔA’D’E’.

Кроме того,

;

Так как вторые отношения этих пропорций равны, что вытекает из подобия многоугольников, то

Используя свойство ряда равных отношений получим:

Или

где S и S’ – площади данных подобных многоугольников.

Следовательно, площади подобных многоугольников относятся как квадраты сходственных сторон.

Полученную формулу можно преобразовать к такому виду: S / S’ = (AВ / A’В’) 2

Площадь произвольного многоугольника

Пусть требуется вычислить площадь произвольного четырёхугольника АВDС (рис).

Проведём в нём диагональ, например АD. Получим два треугольника АВD и АСD, площади которых вычислять умеем. Затем находим сумму площадей этих треугольников. Полученная сумма и будет выражать площадь данного четырёхугольника.

Если нужно вычислить площадь пятиугольника, то поступаем таким же образом: из одной какой-нибудь вершины проводим диагонали. Получим три треугольника, площади которых можем вычислить. Значит, можем найти и площадь данного пятиугольника. Так же поступаем при вычислении площади любого многоугольника.

Площадь проекции многоугольника

Напомним, что углом между прямой и плоскостью называется угол между данной прямой и ее проекцией на плоскость (рис.).

Теорема. Площадь ортогональной проекции многоугольника на плоскость равна площади проектируемого многоугольника, умноженной на косинус угла, образованного плоскостью многоугольника и плоскостью проекции.

Каждый многоугольник можно разбить на треугольники, сумма площадей которых равна площади многоугольника. Поэтому теорему достаточно доказать для треугольника.

Пусть ΔАВС проектируется на плоскость р . Рассмотрим два случая:

а) одна из сторон ΔАВС параллельна плоскости р ;

б) ни одна из сторон ΔАВС не параллельна р .

Рассмотрим первый случай : пусть [АВ] || р .

Проведем через (АВ) плоскость р 1 || р и спроектируем ортогонально ΔАВС на р 1 и на р (рис.); получим ΔАВС 1 и ΔА’В’С’ .

По свойству проекции имеем ΔАВС 1 (cong) ΔА’В’С’, и поэтому

S Δ ABC1 = S Δ A’B’C’

Проведем ⊥ и отрезок D 1 C 1 . Тогда ⊥ , a \(\overbrace{CD_1C_1}\) = φ есть величина угла между плоскостью ΔАВС и плоскостью р 1 . Поэтому

S Δ ABC1 = 1 / 2 | AB | | C 1 D 1 | = 1 / 2 | АВ | | CD 1 | cos φ = S Δ ABC cos φ

и, следовательно, S Δ A’B’C’ = S Δ ABC cos φ.

Перейдем к рассмотрению второго случая . Проведем плоскость р 1 || р через ту вершину ΔАВС, расстояние от которой до плоскости р наименьшее (пусть это будет вершина А).

Спроектируем ΔАВС на плоскости р 1 и р (рис.); пусть его проекциями будут соответственно ΔАВ 1 С 1 и ΔА’В’С’.

Пусть (ВС) ∩ p 1 = D. Тогда

S Δ A’B’C’ = S ΔAB1 C1 = S ΔADC1 – S ΔADB1 = (S ΔADC – S ΔADB) cos φ = S Δ ABC cos φ

Другие материалы

Существуют разные точки зрения на то, что считать многоугольником. В школьном курсе геометрии используют одно из следующих определений.

Определение 1

Многоугольник

— это фигура, составленная из отрезков

так, что смежные отрезки (то есть соседние отрезки с общей вершиной, например, A1A2 и A2A3) не лежат на одной прямой, а несмежные отрезки не имеют общих точек.

Определение 2

Многоугольником называется простая замкнутая .

Точки

называются вершинами многоугольника , отрезки

сторонами многоугольника .

Сумма длин всех сторон называется периметром многоугольника .

Многоугольник, который имеет n вершин (а значит, и n сторон) называется n — угольником .

Многоугольник, который лежит в одной плоскости, называется плоским . Когда говорят о многоугольнике, если не сказано иначе, подразумевается, что речь идёт о плоском многоугольнике.

Две вершины, принадлежащие одной стороне многоугольника, называются соседними . Например, A1 и A2, A5 и A6 — соседние вершины.

Отрезок, который соединяет две несоседние вершины, называется диагональю многоугольника .

Выясним, сколько диагоналей имеет многоугольник.

Из каждой из n вершин многоугольника исходит n-3 диагонали

(всего вершин n. Не считаем саму вершину и две соседние, которые не образуют с данной вершиной диагонали. Для вершины A1, например, не учитываем саму A1 и соседние вершины A2 и A3).

Таким образом, каждой из n вершин соответствует n-3 диагонали. Поскольку одна диагональ относится сразу к двум вершинам, чтобы найти количество диагоналей многоугольника, надо произведение n(n-3) разделить пополам.

Следовательно, n — угольник имеет

диагонали.

Любой многоугольник делит плоскость на две части — внутреннюю и внешнюю области многоугольника. Фигуру, состоящую из многоугольника и его внутренней области, также называют многоугольником.

На этом уроке мы приступим уже к новой теме и введем новое для нас понятие «многоугольник». Мы рассмотрим основные понятия, связанные с многоугольниками: стороны, вершины углы, выпуклость и невыпуклость. Затем докажем важнейшие факты, такие как теорема о сумме внутренних углов многоугольника, теорема о сумме внешних углов многоугольника. В итоге, мы вплотную подойдем к изучению частных случаев многоугольников, которые будут рассматриваться на дальнейших уроках.

Тема: Четырехугольники

Урок: Многоугольники

В курсе геометрии мы изучаем свойства геометрических фигур и уже рассмотрели простейшие из них: треугольники и окружности. При этом мы обсуждали и конкретные частные случаи этих фигур, такие как прямоугольные, равнобедренные и правильные треугольники. Теперь пришло время поговорить о более общих и сложных фигурах – многоугольниках .

С частным случаем многоугольников мы уже знакомы – это треугольник (см. Рис. 1).

Рис. 1. Треугольник

В самом названии уже подчеркивается, что это фигура, у которой три угла. Следовательно, в многоугольнике их может быть много, т.е. больше, чем три. Например, изобразим пятиугольник (см. Рис. 2), т.е. фигуру с пятью углами.

Рис. 2. Пятиугольник. Выпуклый многоугольник

Определение. Многоугольник – фигура, состоящая из нескольких точек (больше двух) и соответствующего количества отрезков, которые их последовательно соединяют. Эти точки называются вершинами многоугольника, а отрезки – сторонами . При этом никакие две смежные стороны не лежат на одной прямой и никакие две несмежные стороны не пересекаются.

Определение. Правильный многоугольник – это выпуклый многоугольник, у которого все стороны и углы равны.

Любой многоугольник разделяет плоскость на две области: внутреннюю и внешнюю. Внутреннюю область также относят к многоугольнику .

Иными словами, например, когда говорят о пятиугольнике , имеют в виду и всю его внутреннюю область, и границу. А ко внутренней области относятся и все точки, которые лежат внутри многоугольника, т.е. точка тоже относится к пятиугольнику (см. Рис. 2).

Многоугольники еще иногда называют n-угольниками, чтобы подчеркнуть, что рассматривается общий случай наличия какого-то неизвестного количества углов (n штук).

Определение. Периметр многоугольника – сумма длин сторон многоугольника.

Теперь надо познакомиться с видами многоугольников. Они делятся на выпуклые и невыпуклые . Например, многоугольник, изображенный на Рис. 2, является выпуклым, а на Рис. 3 невыпуклым.

Рис. 3. Невыпуклый многоугольник

Определение 1. Многоугольник называется выпуклым , если при проведении прямой через любую из его сторон весь многоугольник лежит только по одну сторону от этой прямой. Невыпуклыми являются все остальные многоугольники .

Легко представить, что при продлении любой стороны пятиугольника на Рис. 2 он весь окажется по одну сторону от этой прямой, т.е. он выпуклый. А вот при проведении прямой через в четырехугольнике на Рис. 3 мы уже видим, что она разделяет его на две части, т.е. он невыпуклый.

Но существует и другое определение выпуклости многоугольника.

Определение 2. Многоугольник называется выпуклым , если при выборе любых двух его внутренних точек и при соединении их отрезком все точки отрезка являются также внутренними точками многоугольника.

Демонстрацию использования этого определения можно увидеть на примере построения отрезков на Рис. 2 и 3.

Определение. Диагональю многоугольника называется любой отрезок, соединяющий две не соседние его вершины.

Для описания свойств многоугольников существуют две важнейшие теоремы об их углах: теорема о сумме внутренних углов выпуклого многоугольника и теорема о сумме внешних углов выпуклого многоугольника . Рассмотрим их.

Теорема. О сумме внутренних углов выпуклого многоугольника (n -угольника).

Где – количество его углов (сторон).

Доказательство 1. Изобразим на Рис. 4 выпуклый n-угольник.

Рис. 4. Выпуклый n-угольник

Из вершины проведем все возможные диагонали. Они делят n-угольник на треугольника, т.к. каждая из сторон многоугольника образует треугольник, кроме сторон, прилежащих к вершине . Легко видеть по рисунку, что сумма углов всех этих треугольников как раз будет равна сумме внутренних углов n-угольника. Поскольку сумма углов любого треугольника – , то сумма внутренних углов n-угольника:

Что и требовалось доказать.

Доказательство 2. Возможно и другое доказательство этой теоремы. Изобразим аналогичный n-угольник на Рис. 5 и соединим любую его внутреннюю точку со всеми вершинами.

Рис. 5.

Мы получили разбиение n-угольника на n треугольников (сколько сторон, столько и треугольников). Сумма всех их углов равна сумме внутренних углов многоугольника и сумме углов при внутренней точке, а это угол . Имеем:

Что и требовалось доказать.

Доказано.

По доказанной теореме видно, что сумма углов n-угольника зависит от количества его сторон (от n). Например, в треугольнике , а сумма углов . В четырехугольнике , а сумма углов – и т.д.

Теорема. О сумме внешних углов выпуклого многоугольника (n -угольника).

Где – количество его углов (сторон), а , …, – внешние углы.

Доказательство. Изобразим выпуклый n-угольник на Рис. 6 и обозначим его внутренние и внешние углы.

Рис. 6. Выпуклый n-угольник с обозначенными внешними углами

Т.к. внешний угол связан со внутренним как смежные, то и аналогично для остальных внешних углов. Тогда:

В ходе преобразований мы воспользовались уже доказанной теоремой о сумме внутренних углов n-угольника .

Доказано.

Из доказанной теоремы следует интересный факт, что сумма внешних углов выпуклого n-угольника равна от количества его углов (сторон). Кстати, в отличие от суммы внутренних углов.

Список литературы

  1. Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.
  1. Profmeter.com.ua ().
  2. Narod.ru ().
  3. Xvatit.com ().

Домашнее задание

Оцените статью
Все обо всем
Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Ок